ПОДКЛЮЧЕНИЕ 120 ВОЛЬТНЫХ БЛОКОВ ПИТАНИЯ К 220

ПОДКЛЮЧЕНИЕ 120 ВОЛЬТНЫХ БЛОКОВ ПИТАНИЯ К 220


ПОДКЛЮЧЕНИЕ 120 ВОЛЬТНЫХ БЛОКОВ ПИТАНИЯ К 220

ПОДКЛЮЧЕНИЕ 120 ВОЛЬТНЫХ БЛОКОВ ПИТАНИЯ К 220, Журнал Радио 7 номер 1998 год. ИСТОЧНИКИ ПИТАНИЯ
ПОДКЛЮЧЕНИЕ МАЛОГАБАРИТНЫХ ВЫНОСНЫХ 120-ВОЛЬТНЫХ БЛОКОВ ПИТАНИЯ К СЕТИ 220 В
С. БИРЮКОВ, г. Москва

Малогабаритными выносными блоками питания, выполненными в виде сетевой вилки (их еще называют адаптерами), комплектуется различная бытовая радиоаппаратура (телефоны, калькуляторы, радиоприемники и т. д.). К сожалению, нередки случаи, когда такой блок оказывается рассчитан на напряжение сети 120 В. О том, как их можно подключить к сети 220 В, и идет разговор в предлагаемой статье.


Малогабаритный выносной блок питания (А1 на рис. 1), рассчитанный на входное напряжение 120 В, можно подключить к сети 220 В, по крайней мере, четырьмя способами. Рассмотрим их на примере блока Panasonic КХ-А09, которым комплектуются бесшнуровые телефоны КХ-ТС910-В. На его корпусе указаны: входное напряжение — 120 В при частоте 60 Гц; потребляемая от сети мощность — 6 Вт; выходные параметры: напряжение — 12 В; постоянный ток — 200 мА.

На частоте 50 Гц входное напряжение должно быть снижено. Поэтому от блока питания невозможно получить паспортное значение выходного напряжения; скорее всего, его нельзя использовать для питания устройства, в комплект которого он входил. Если же указана частота сети 50...60 Гц, его, естественно, можно будет применить по назначению.

На рис. 2 приведена зависимость выходного напряжения рассматриваемого малогабаритного выносного блока питания от тока нагрузки при входном напряжении 105 В (кривая 1). Для получения сопоставимых результатов все дополнительные элементы (R1, С1, С2 на рис. 1) в дальнейшем подбирались так, чтобы обеспечить выходное напряжение 11,8В при токе 120 мА (сопротивление нагрузки — 98 Ом).

Самый простой, но обладающий наименьшим КПД, вариант подключения показан на рис. 1,а. Сопротивление резистора R1 можно рассчитать, как рекомендуется, в [1], а можно и подобрать.

Вначале следует оценить его сопротивление по полуэмпирической формуле, обеспечивающей отсутствие перегрузки блока: R1 = 22/Р где R1 — сопротивление резистора, в килоомах, Р — мощность, потребляемая блоком, в ваттах. В рассматриваемом случае R1 = = 22/6 = 3,6 кОм. Далее подключают нагрузку и, постепенно уменьшая сопротивление резистора, добиваются необходимого выходного напряжения. Лучше, конечно, использовать проволочный переменный резистор на соответствующую мощность. Для получения необходимого выходного напряжения потребовался резистор сопротивлением 2,44 кОм. Зависимость выходного напряжения от тока нагрузки для выбранного резистора R1 представлена на рис. 2 (кривая 2). Видно, что напряжение падает с увеличением тока более резко.

Чтобы уменьшить потери, по рекомендации в [1] параллельно первичной обмотке трансформатора блока питания был подключен конденсатор, емкость которого подбиралась для обеспечения резонанса (см. рис. 1,б). На рис. 3 приведена зависимость выходного напряжения от емкости конденсатора. Резонанс хотя и заметен, но его роль ничтожна — напряжение увеличивается всего на 1,5%. Для сохранения выходного напряжения на заданном уровне при емкости конденсатора С1 = 0,44 мкФ сопротивление резистора R1 было увеличено до 2,57 кОм. Нагрузочная характеристика блока (рис. 2, кривая 3) в таком варианте включения мало отличалась от кривой 2.

Вполне естественно заменить резистор R1 на конденсатор (см. [2], где работа конденсаторного делителя рассмотрена применительно к нелинейной активной нагрузке). При сохранении С1 = 0,44 мкФ емкость конденсатора С2 потребовалась равной 0,54 мкФ (см. рис. 1,в). Нагрузочная характеристика для этого случая менее крута (кривая 4 на рис. 2).

В еще большей степени уменьшить зависимость выходного напряжения от тока можно, увеличив емкости конденсаторов С1 и С2. Например, при произвольно выбранной емкости С1 = 1 мкФ подобранная для обеспечения заданного напряжения емкость конденсатора С2 составила 0,67 мкФ (кривая 5 на рис. 2).

С другой стороны, если стабильность выходного напряжения при изменении тока нагрузки непринципиальна или ток нагрузки практически не меняется, можно исключить конденсатор С1 (см. рис. 1,г). Подборку емкости можно начать со значения, рассчитанного по полуэмпирической формуле: С2 = Р/12, где С2 — емкость конденсатора, в микрофарадах; Р — мощность блока, в ваттах. Формула учитывает запас, исключающий перегрузку блока питания. Для рассматриваемого случая начальная емкость конденсатора С2 = 6/12 = 0,5 мкФ. При подобранной емкости С2 = 0,76 мкФ и изменении тока нагрузки от 0 до 200 мА выходное напряжение меняется от 27 до 8,9 В (кривая 6, рис. 2).

Интересно отметить, что емкость конденсатора С2 получилась больше, чем для варианта на рис. 1 ,в. Это объясняется частичной взаимной компенсацией реактивных токов через конденсатор С1 и индуктивность первичной обмотки трансформатора.

Таким образом, если необходима стабильность выходного напряжения при изменении тока нагрузки, наиболее целесообразно использование конденсаторного делителя. Если же стабильность не играет роли, используйте вариант с одним конденсатором С2 (см. рис. 1,г).

Варианты подключения блока питания (см. рис. 1 ,а и б) применять нецелесообразно из-за больших потерь мощности и сильного нагрева балластного резистора.

Приведенные на рис. 2 графики иллюстрируют зависимости среднего значения выходного напряжения. Реально на него наложено напряжение пульсаций, его форма близка к пилообразной, а амплитуда практически не изменяется в зависимости от способа подключения (см. рис. 8 в [3]).

Для вариантов рис. 1,в и г параллельно конденсатору С2 для разрядки после отключения блока питания от сети следует установить резистор сопротивлением несколько сотен килоом. Кроме того, в варианте рис. 1,в желательно последовательно с конденсатором С2 подключить токоограничительныи (в момент включения в сеть) резистор сопротивлением 22...47 Ом. Номинальное напряжение конденсаторов должно быть не менее 250 В, очень удобны К73-16 и К73-17.

При всех экспериментах следует помнить, что номинальное напряжение оксидных конденсаторов фильтра, устанавливаемых в малогабаритных выносных блоках питания, обычно 16 В, и поэтому подача на них большего напряжения на сколько-нибудь длительное время нежелательна.

ЛИТЕРАТУРА
1. Чуднов В. 120-вольтный блок литания в сети 220 В. — Радио, 1998, ╧ 6, с. 62.
2. Ховайко О. Источники питания с конденсаторным делителем. — Радио, 1997, ╧11, с. 56, 57
3. Бирюков С. Сетевые выносные блоки питания. — Радио, 1998, ╧ 6, с. 66, 67.
Категория: ИСТОЧНИКИ ПИТАНИЯ | Просмотров: 5192 | Добавил: Админ | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Воскресенье, 24.09.2017, 20:40
Партнёры
Здесь
Форма входа
Календарь
«  Апрель 2012  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0